Qiaoyu Tan is an Assistant Professor of Computer Science at NYU Shanghai. He received his PhD from the Department of Computer Science and Engineering at Texas A&M University, under the supervision of Dr. Xia Hu. Before his current position, he worked as a research intern at Alibaba Damo Academy and Samsung Research America. His research interests span machine learning and data mining, with a focus on graph machine learning, foundation model development, multimodal learning, trustworthy AI, and applications in bioinformatics and healthcare.
Select Publications
Qiaoyu Tan, Ninghao Liu, Xiao Huang, Soo-Hyun Choi, Li Li, Rui Chen, and Xia Hu. S2GAE: Self-supervised graph autoencoders are generalizable learners with graph masking. In Proceedings of ACM International Conference on Web Search and Data Mining (WSDM), 2023.
Qiaoyu Tan, Xin Zhang, Xiao Huang, Hao Chen, Jundong Li, and Xia Hu. Collaborative graph neural Networks for attributed network embedding. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2023.
Sirui Ding, Qiaoyu Tan, Chia-yuan Chang, Na Zou, Kai Zhang, Nathan R. Hoot, Xiaoqian Jiang, and Xia Hu. Multi-task learning for post-transplant cause of death analysis. In Proceedings of AMIA Annual Symposium (AMIA), 2023.
Qiaoyu Tan, Jianwei Zhang, Ninghao Liu, Xiao Huang, Hongxia Yang, Jingren Zhou, and Xia Hu. Dynamic memory based attention network for sequential recommendation. In Proceedings of AAAI Conference on Artificial Intelligence (AAAI), 2021.
Qiaoyu Tan, Ninghao Liu, Xing Zhao, Hongxia Yang, Jingren Zhou, and Xia Hu. Learning to hash with graph neural networks for recommender systems. In Proceedings of The Web Conference (WWW), 2020.
Education
- PhD, Computer Science and Engineering
Texas A&M University
Graph machine learning
Foundation model
Large language model
Multimodal learning
Bioinformatics and healthcare