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Abstract

In this paper, we consider the global well-posedness of a three-dimensional in-
compressible MHD type system with smooth initial data that is close to some
nontrivial steady state. It is a coupled system between the Navier-Stokes equa-
tions and a free transport equation with a universal nonlinear coupling structure.
The main difficulty of the proof lies in exploring the dissipative mechanism of
the system due to the fact that there is a free transport equation of ¢ in the cou-
pled equations and only the horizontal derivatives of ¢ is dissipative with respect
to time. To achieve this, we first employ anisotropic Littlewood-Paley analysis
to establish the key L1(R™;Lip(R3)) estimate to the third component of the
velocity field. Then we prove the global well-posedness to this system by the
energy method, which depends crucially on the divergence-free condition of the
velocity field. © 2013 Wiley Periodicals, Inc.

1 Introduction

In this paper, we investigate the global well-posedness of the following three-
dimensional incompressible system, which will be called of MHD type:

A +u-Veo =0, (t,x) e Rt xR3,
diu+u-Vu—Au+Vp
(1.1 = —div[Ve ® V¢,

divu =0,

Plt=0 = ¢o, ult=0 = uo,
with initial data (¢, 1) smooth and close enough to the equilibrium state (x3, 0).
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Recall that the MHD system in R¥ reads

db+u-Vb=>b-Vu, (t,x) e RT xR,
diu+u-Vu—Au+ Vp

(1.2) =—1Vb]®2 +b-Vb,

divu =divb = 0,

blt=0 = bo, ult=o0 = uo,

where u, b denotes the flow velocity field and the magnetic field vector, respec-
tively, and p the scalar pressure. This MHD system with zero diffusivity
in the equation for the magnetic field can be applied to model plasmas when the
plasmas are strongly collisional or when the resistivity due to these collisions is
extremely small. It often applies to the case when one is interested in the k-length
scales that are much longer than the ion skin depth and the Larmor radius perpen-
dicular to the field, long enough along the field to ignore the Landau damping, and
time scales much longer than the ion gyration time [3,[7,/11]]. In the particular case
when d = 2 in (1.2), divb = 0 implies the existence of a scalar function ¢ so that
b = (—d2¢ 31¢)", and the corresponding system becomes (T.1)) with d = 2.

The goal of this paper is to solve the global small solutions to the three-dimensional
case of (I.I). We believe the techniques developed in this paper will be useful for
various important and related problems. In fact, by combining the ideas and tech-
niques developed in this paper, some additional estimates and a new formulation
of the problem in two dimensions lead to a solution of the true MHD system in two
dimensions. We will present these in the forthcoming paper [14].

We shall point out that the nonlinear coupling structure in (1.1)) is universal and
it has been presented in many important models; see the recent survey article [[12].
Indeed, the system (I.1)) resembles the two-dimensional viscoelastic fluid system:

Uy +u-VU = Vul,
ur+u-Vu+Vp=Au+V-UU"),
divu =0,

Ult=0 = Up, ult=0 = uo,

(1.3)

where U denotes the deformation tensor, u is the fluid velocity, and p represents
the hydrodynamic pressure (we refer to [[13|] and the references therein for more
details).

In two space dimensions, when V - Uy = 0, it follows from (L.3)) that V- U =0
for all # > 0. Therefore, one can find a ¢ = (¢b1, ¢2) such that

_ (—02¢1 —02¢2
U—( D1 81¢2)'
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Then (1.3) can be equivalently reformulated as

¢t +u-Vo =0,
(1.4) us+u-Vu+Vp = Au—ziz:l A¢iVoi,
' divu =0,

Pli=0 = o, ulr=0 = uo.

One sees the only difference between (I.1) and (1.4) lies in the fact that ¢ is
a scalar function in (I.T)), while ¢ = (¢1, ¢2) is a vector-valued function in (T.4).
The authors [|13]] established the global existence of smooth solutions to the Cauchy
problem in the entire space or on a periodic domain for (T.4) in general space
dimensions provided that the initial data is sufficiently close to the equilibrium
state. The main difficulty in proving this global existence result lies in the free
transport equation of ¢ in (1.4)), which does not show any dissipative mechanism.

However, it is observed in [13]] that the combined quantity w el (¢ —x) satisfies

2
w,—Aw:—u-Vw—Vp—ZA¢iV(¢i—Xi)‘i‘“o

i=1

This equation for w together with the important fact that det(g—f) = 1 leads to
some decay estimates which overcome the difficulty of the hyperbolic nature of
the ¢-equation in (I.4). In fact, the damping mechanism of the system (1.4)) can be
seen more directly from the linearization of the system 9d; (I.4):

btr — Ap — Agr + Vg = |,
(1.5) Uyg —Au— Auy +Vp = F,
divg =divu = 0.

For the incompressible MHD equations (I.2]), whether there is a dissipation or
not is also a very important problem from the physics of plasmas. The heating of
high-temperature plasmas by MHD waves is one of the most interesting and chal-
lenging problems of plasma physics especially when the energy is injected into
the system at length scales much larger than the dissipative ones. It has been con-
jectured that in the MHD systems, with nonvanishing underlying magnetic fields,
energy of the system is dispersed and also dissipated at a rate that is independent
of the ohmic resistivity [4]. The dispersive nature of the system with nonvanishing
magnetic fields was apparently known (from a private communication with Pro-
fessor A. Majda); see also [[16]. In other words, the viscosity (diffusivity) for the
magnetic field equation can be O yet the whole system may still be dispersive and
dissipative when the magnetic fields are not 0. This is the key reason why we con-
sider (L.T)) with initial data close to a nontrivial steady state (x3,0). Moreover, as
the dispersive estimate is often much stronger in three dimensions than in two, as
a model problem we shall first consider the global well-posedness of (I.1I)) with
smooth initial data close to (x3,0). Of course, x3 here can be replaced by any
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nontrivial linear function. On the other hand, without a nonzero magnetic field, the
dispersive effect disappears, and in fact it is an open problem to establish global
existence of small solutions of (I.I)) when the initial data is close to (0, 0).

We note that, after substituting ¢ = x3 + ¢ into (1.1I), one obtains the following
system for (Y, u) :

Wy +u-Vy +u3 =0, (t,x) e RT xR3,
Btuh +u-Vul — Aul
+ VR3¢ + Vipp = —div[V ¥ @ V],

(1.6) oud +u-Vud — Aul
+(A+ 3DV +d3p = —div[asy V],
divu =0,

(Y, u)|i=0 = (Yo, uo).

Here and in what follows, we shall always define ul = W, u?), v, = (Oxys 0xy)s
and Ay := 9% +92,.
Starting from (1.6), a standard energy estimate gives rise to

1d
52 (IVVOlZ2 + [u®IZ2) + [Vu@)lz2 = 0

for smooth enough solutions (¥, u) of (I.6). The main difficulty in proving the
global existence of smooth solutions to (1.6) is thus to find a dissipative mecha-
nism for ¥. Motivated by the heuristic analysis in Section 2.1, we shall employ
anisotropic Littlewood-Paley theory to capture the delicate dissipative mechanism
of ¥ in Section 3. It turns out that the dissipation of 13 is much stronger than that
of u”, and the horizontal derivatives of ¥, Vyr, are more dissipative than d3 .
This, in some sense, also justifies the necessity of using anisotropic Littlewood-
Paley theory in Section 3]

Before going further, by taking the divergence of the u-equation of (I.6)), we can
compute the pressure function p via

1.7)

3
(1.8) p==203¢+ Y (=A)'[opul dju’ +9;0; ;w0 v).

i,j=1
Substituting into results in
0y +u-Vy +u3 =0, (t,x) e RT xR3,
dul +u - Vul — Aul — V339 = £,
(1.9) 0ud +u-Vud — Aud + Ay = £V,

divu =0,

(¥, w)lr=0 = (Yo, uo)
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with f” and fV being defined by

3
FPE =3 V=) T 0t + 059, (090 9]

i,j=1

3
- Z 0; (Vi ).

(1.10)
v def

Z 93(—A) " Moul dju’ + 9;9,(9; v 3;¥)]

i,j=1

3
— > 8,039 0;v).
=1
The object of this paper is to prove the following global well-posedness theorem
for (1.9):

THEOREM 1.1. Let s € (—%, 0), s2 > 3. Assume the initial data (o, ug) satisfies
(Vo ug) € HS1(R3) N H%2(R3) and
(1.11) ”VWOHHS]nHSz + ||u0||H51r1H32 =c¢o
for some cq sufficiently small. Then (I.9) has a unique global solution (u,¥) (up
10 a constant for ) so that Vi € C([0, 00); HS' (R3) N H52(R3)) with V¥ €
L2(R*; HITSU(R3) N H%2(RY)),
u € C([0,00); HS'(R?) N H2(R3)) N L2(RT; A1 (R3) n H1T52(R3))
and with u® € LY(R™; Lip(R®)). Furthermore, there holds
““”L%O(Hn) + ““”L;O(HSz)
3
+ ||V1/’||LC%O(HS1) + ||VW||L<%O(HS2) + [|Vu ”LIT(UP)
+ C(”V””LZT(Hn) + ||V“||L2T(HS2) + ||Vh1ﬂ||L2T(H1+S1) + ||Vh1/f||L2T(Hsz))
< Cllluoll gsi + lluoll grsy + IVYoll gsy + VW0l gsn)  forany T < oo.
We want to make some preliminary remarks on the above statement.
Remark 1.2. As ¥ is a scalar function in (I.9), we cannot apply the ideas and
analysis developed in [13}[15] for (I.3)) in order to solve (I.9). To find the hidden
dissipation in (I.9) may be trickier than the case of the classical isentropic com-
pressible Navier-Stokes system (CNS) as it was first discussed by Danchin [[§]].

Indeed, Danchin proved that the variation of the density function around a con-
stant state to (CNS) belongs to LZ(R™; B d/ 2(]Rd)) and the velocity field is in

LY(RT; B(d/ 2)-H(]Rd)) provided the imtlal data is close enough to a constant
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state, while for our problem here one could only prove that the horizontal deriva-
tives of v, Vv, are in the space L2(R™; H*(R?)), while the third component
of the velocity field, u3, is in the space L' (R™; Lip(R?)). Much of the technical
difficulties are in getting around these missing estimates.

Remark 1.3. It is also rather technical to explore the delicate mechanism of par-
tial dissipations in (I.9). We settled the difficulties at the end by applying the
anisotropic Littlewood-Paley theory. One of the general questions we face is the is-
sue concerning the propagation of anisotropic regularity for the transport equation.
We do not know any existing method to handle such questions in general. Here, to
overcome this difficulty, we shall introduce a suitable anisotropic Besov-type norm
in Definition [2.3] and then establish a priori estimates in such norms for solutions
along with the interpolation inequality between this norm and the classical Sobolev
norms (see (2.6)). Of course, one may ask if these anisotropic (Sobolev) estimates
can also be established by working only in the physical space. We have done var-
ious preliminary calculations and estimates, and we found it is rather difficult also
if it is at all possible. On the other hand, by working in the phase space, and using
anisotropic Littlewood-Paley analysis, various estimates (although they look rather
complicated) seem quite natural.

It is interesting to see how the anisotropic Littlewood-Paley theory can be ap-
plied to these evolution equations with degenerations of certain ellipticity (parabol-
icity) in phase variables. One may compare it with classical Hormander-type op-
erators (hypoellipticity) generated by suitable vector fields in the physical space.
It would be interesting to investigate these operators where the vector fields also
evolve with time (and sometimes depend nonlinearly on solutions).

Remark 1.4. It is easy to observe from the linearized system (I.13)) of (I.9) that
satisfies the degenerate damped wave equation

Y — Apy — Ay = 9,8° — Ag® —g".

It is well-known that for the wave system, its solutions decay faster in a higher
space dimension, which is a crucial fact to prove the global existence of small
solutions to nonlinear systems. By using the method introduced in this paper, we
can only solve (I.9) in three dimensions (one may check the technical explanation
following (I.13)). The two-dimensional result will be presented in [14] by using a
different formulation of the system (1.9).

Scheme of the Proof and Organization of the Paper

Let (y,u) be a global smooth solution of (I.9); applying a standard energy
estimate to (I.9) leads to

41 2 2 1 > Y1 s an).
(112 S (OB, + 19O, + {18001, ) + 367 | v

3 1
h 2 312 2 _
IV, + IV, + IV VI, =
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1
= (Vi) L) e = (V¥ | V- V) o = (e Vi) | AY)
1 1
= 0 [ A VY)) e = (A0 VY)Y | AY) g + (" 1) o

+(f”|u3+im/f). ,

HS

where (a | b) 5, denotes the standard H*(R3) inner product of ¢ and b. (T.12)

shows that Vv is in the space L2(R™; H!1S(R3)). After a careful check, we
would also need to estimate the L' (R™; Lip(R?))-norm of u3 in order to complete
the global energy estimate required in (I.12)). Here we not only use the estimates
for V3 but also apply the fact that divu = 0 in a rather crucial way.

Toward this, we shall first investigate the spectrum properties to the following
linearized system of (I.9):

0y +ud = g°, (t,x) e RT xR3,
dul — Auh — V039 = gh,
(1.13) dud — Aud + Apy = gv,
divu =0,
(Y. u)|t=0 = (Yo, uo).

Simple calculation shows that the symbolic matrix of (I.13)) has eigenvalues A (&)
and A4 (§) given by (2.1) that satisfy (2.2). This shows that smooth solutions of
(T.13)) decay in a very subtle way; moreover, we will have to decompose our fre-

quency analysis into two parts: {§ = (£4.£3) : |£]? < 2|&,|} and {§ = (§,.&3) :
|E]? > 2|&p|}. Tt suggests using anisotropic Littlewood-Paley analysis in order to
obtain the L' (R, Lip(R?)) estimate of 3.

Yet due to the fundamental difficulty in propagating anisotropic regularity for the
transport equations as we mentioned before, we need to introduce the functional
space 3152 in Deﬁnitionand to show first that the L1 (RT; BG/2)=8:8) (for § e
(%, 1)) estimate of u> in Proposition Note that it would essentially require f7
given by (T.9) to belong to L' (R™, BU 2)-8.8) Here we should point out that this
requirement is basically equivalentto f¥ € L'(RY; Bg{ -4 (Rv)(l’j’g’1 (Ri))) for
5 e (%, 1), while for the two-dimensional case, this would require fV € L! (R+;
B 51 (RU)(ZS’g’1 (Ri))) for§ € (%, 1). The latter is impossible due to product laws
in Besov spaces in the vertical variable. This is why we will have to use another
formulation of (I.1)) to prove its global existence of small solutions in the two-
dimensional case in our forthcoming paper [[14]].

In the first part of Section[2] we shall present a heuristic analysis to the linearized
system of (1.9), which motivates us to use anisotropic Littlewood-Paley theory be-
low; then we shall collect some basic facts on Littlewood-Paley analysis in Section
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[2.2] In Section[3] we apply anisotropic Littlewood-Paley theory to explore the dis-
sipative mechanism for a linearized model of (I.9) but with a convection term. In
Section[d] we present the proof of Theorem[I.1] Finally, in Appendix[A] we present
the proofs of Lemmas [3.1] [3.2] and [3.5] and in Appendix [B] we present the proof
of the lemmas in Section 4]

Let us complete this section by describing the notation we shall use in this paper.

Notation

For A, B two operators, we denote [A; B] = AB— BA, the commutator between
A and B. For a < b, we mean that there is a uniform constant C, which may be
different on different lines, such that a < Cb; a ~ b means that both a < b and
b < a. We shall denote by (a | b) the L?(R?) inner product of ¢ and b. (djk)jkez
(respectively, (cj);ez) will be a generic element of 01(Z?) (respectively, £2(Z))
sothat }; yez djx = 1 (respectively, } ey c/2 = 1). Finally, we denote by
LZ.(LI(L})) the space L?([0, T]; LY (Rx; X Ryy: L™ (Rx3))).

2 Preliminary

2.1 Spectral Analysis of the Linearized System

Before dealing with the full system (I.9)), we shall make some heuristic analysis
of the linearized system (1.13). Indeed, observe that (I.13)) can also be equivalently

written as ;
(w) _ ot AD) (Wo) +/ U=DAD) G (5)ds,
u Uuo 0
where
0 0 0 0 -1
& 02195 A 0 0
— h — 1
G(s) = gv and A(D) = 995 0 A 0
g —A, 0 0 A
The symbolic matrix of the differential operator A(D) reads
0 0 0 —1
—&iks €70 0
A¢) = ,
©O=l-te o —kr o
&> 0 0 g

def . . . .
where &, = (£1,&). It is easy to calculate that this matrix has three different
eigenvalues

2 4 _ 2
@ ho®) = P, 2u = S EVERZHGE

In the remainder of this subsection, we always use (1, #) to denote a sufficiently
smooth solution of (I.13)) with a zero source term and a the Fourier transform of
the distribution a.
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Notice that, corresponding to A (§) in (2.1)), A(§) has left characteristic vectors
(& El’ 527 53) and (0,0, |§h|2v 5253) or (0, |Sh |2’ 0, 51%—3)'

This suggests that the quantities £-7(¢, £) and (§;u?—&ul)(¢, £) decay like etIER,
Thanks to the divergence condition of u in (T.13), & - u(¢, §) = 0, which however
does not provide any additional estimate for u.

On the other hand, corresponding to the eigenvalues A 4 in (2.1), the matrix A(§)
has left characteristic vectors

) _ﬁ( /_4|sh|2)) (@( _4|sh|2) _)
(|$h| ,0,0, > 1+,/1 £ , 2 1+,4/1 HE ,0,0,—1),

which suggests that (—m + A/\u3)(t, £) decays like eI |2, whereas the decay
properties of (@ + L;\z’)(t, £) may be more complicated. Indeed, in the case where
21&,| = |€)?, (Kt/\f + 1;5)([, &) decays just like e~ 1E7/2; otherwise the decay prop-
erty of (@ + 12\3 )(¢, &) varies with directions as

2
2.2) A_(E) = — 2[6] ——1 as|f] - oo

2 _ A&l
€1 (H 1 |$|4)

only in the &;,-direction. This heuristic analysis shows that the dissipative proper-
ties of the solutions to (I.9) may be more complicated than that for the linearized
system of the isentropic compressible Navier-Stokes system in [[8]], and this brief
analysis also suggests to us to employ the tool of anisotropic Littlewood-Paley
theory, which has been used in the study of the anisotropic incompressible Navier-
Stokes equations [5,[69}[10,[17H19] to explore the dissipative properties of (1.9).
One may check Section 3| below for the detailed rigorous analysis corresponding
to various scenarios.

2.2 Littlewood-Paley Theory

The proof of Theorem [I.1]requires a dyadic decomposition of the Fourier vari-
ables, or the Littlewood-Paley decomposition. Let us briefly explain how it may
be built in the case x € R? (see, e.g., [1]]). Let ¢(7) and y(z) be smooth functions
such that

3 8 .
Suppp C{teR |~ <|t] <=; and Vt>0,290(2_/r)=1,
4 3 iz

Supp)(C{fE]R

7| < g} and () + Y @@ /1) =1

Jj=0
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For a € S'(R?), we set

A E F e g0, Sta ¥ F @ * gD,

23) A€ F e YEha).  Sta S FR D).
Aja E F e EDE).  Sja € FTl (7 [gha),

with F~1a being the inverse Fourier transform of the distribution a. Then the
dyadic operators satisfy the property of almost orthogonality:

(24) ApAja=0 iflk—j|>2 and Ag(Sj—1aAja)=0 iflk—j|>5.
Similar properties hold for AZ and Aj.

We recall now the definition of homogeneous Besov spaces from [[1].
DEFINITION 2.1 (Definition 2.15 of [1]). Let (p,r) € [1,4+00]?, s € R. The

homogeneous Besov space Bls,’r (R3) consists of those distributions u € S;l (R3),

which means that u € S’(R?) and lim; oo ||SjullLec = O (see definition 1.26
of [1]]) such that

def
lull g5 = TN AGulL e (z) < 0.
Remark 2.2.

(1) Itis easy to observe that the homogeneous Besov space Bé,z (R3) coincides

with the classical homogeneous Sobolev space H*(R3). .
2) Lets e R,1 < p,r <oo,and u € S/(RS). Then u belongs to B;’r(R3)
if and only if there exists {c; ,};ez such that |[c; | ¢ = 1 and

IAjullr < Cejr 275 ||ullgs  forall j € Z.
D.r
To explore the delicate dissipative mechanism of system (1.9), instead of using

the classical anisotropic-type Besov spaces as found in [5}/6,/10,/17], we need to
introduce the following norm:

DEFINITION 2.3. Let 51,52 € R and u € 8’ (R?); we define the norm
def ;
lullgsis2 = Z 21282 | A AU o
jkez?

However, due to the difficulty of propagating anisotropic regularities to solu-
tions of transport equations, we need the following imbedding theorem between
B5152(R3) defined above and the classical homogeneous Sobolev spaces (see [9]
for a similar situation).

LEMMA 2.4. Let 81,52, T1, T2 be positive numbers with s1 < t1 + 13 < 3. Then
ifa € HS'(R®) N H%2(R?), a € B™™, there holds

lallgerea < llall gsi + llall gss-
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PROOF. Indeed, thanks to Definition 2.3} we have
lallama = (32 + 3°) 271252 | &, Ak .
k<j Jj<k

Notice that since 7, > 0, we have
> 2k A Akal,, ) 27 Aall Y2k

k<j el k<j
(2.5) =/ / . =/
<N 2@+ A a0 < llal - .
=53 I18sallz2 % lall g1+,
JEZL

Along the same line, we get, by using the fact that j > k — Ny in the operator
Aj A%, that

222 A Apa] . s Y0 25 A . 320

k<j keZ j<k
k(t1+ h
s )2 agal
keZ
s D 2Taale
k<j—No
< 2@+ A4 < llall -
< 2V asale 5 lal gy,
JEZ
which together with (2.5) completes the proof of the lemma. O

In order to obtain a better description of the regularizing effect of the transport-
diffusion equation, we will use Chemin-Lerner type spaces L'} (B, (R3)) from [1]).

DEFINITION 2.5. Lets < % (or, in general, s € R), (r,A, p) € [1, -|—oo]3, and
T € (0, +o00]. We define the zé(Bls,r(Rs))—norm by

r N
def
1/ Wiy & (qu”( [ 18 s an) ) < oo,

qeZ
with the usual change if r = oco. For short, we just denote this space by Z)} (B;,r).
Remark 2.6. Corresponding to Definitions [2.3]and [2.5] we define the norm

3 2 27s12ks2| A Aty HLg(Lz)-
J.keZ

def

1/ 2 gst2) =

In particular, it follows from the same line of proof for Lemma [2.4] that
(2.6) ||f”Z2T([5T1sfz) < ”f”L%_(HSl) + ||f||L%,(Hé‘2)

with 71, 72 and s1, 52 being given by Lemma[2.4]
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As we shall repeatedly use the anisotropic Littlewood-Paley theory in what fol-
lows, for the convenience of the reader, we list some basic facts here.

LEMMA 2.7. Let By, (respectively, By) be a ball of ]R{,ZI (respectively Ry), and Cy,
(respectively Cy) a ring ofR]% (respectively Ry); let 1 < pp < py <ocoand1 <
q2 < q1 < o0o. Then the following hold:

If the support of a is included in 2k By, then

k(lal+2(55=57))
||8§ha||L}z;|(qu)52 p2 Pl ||a||L;;z(chu).

If the support of a is included in 2tB,, then

8 LB+(E—2)
”33“”L;'(L‘v”)52 2 7 lall e -

If the support of a is included in 2k Cp, then

—kN
”a”LZl(LZl) <2 lslupNHaghaHLZl(LZ')'
o|l=

If the support of @ is included in 2¢Cy, then
—{N || aN
lallr oy 2705 al o1 oy,

PROOF. Those inequalities are classical (see, for instance, [6,(17]). For the
reader’s convenience, we shall prove the third one in the specific case when N = 1.
Let us consider @ in D(R? \{0}) such that & has value 1 near C;,. Then for any tem-
pered distribution a such that the support of @ is included in 2Ky, we have

_iSna(Eh)

a=27i(6151Q %) + 0227 E)a  with Gu(5) = &P

Then, we have

h h
27 a=2% divy, Xka, Zka def (AI,Z 14, Aﬁ 2a),
’ def 1~ m—ks
AL o = F L@ epa).
A similar formula will be useful later on, and it proves the third inequality of the
lemma in the particular case when N = 1. U

Let us conclude this section by modifying the isotropic paradifferential decom-
position of J. M. Bony [_2] to the setting of anisotropic version. We first recall the
isotropic paradifferential decomposition from [2]]: let a, b € S'(R?),

(2.8) ab =T(a,b)+R(a,b) or ab = T(a,b)+ T(a,b)+ R(a,b),
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where
T(a.b)=Y_Sj1aA;jb, T(a.b)=T(b.a). R(a.b)=> AjaS;ib.
JEZ JEZ
j+1
R(a.b) = Ajaljb, Ajb= ) Agu.
jez L=j—1

We shall also use the following anisotropic version of Bony’s decomposition for
the horizontal variables:

(2.9) ab = T"(a,b) + R"(a,b) or ab=T"(a,b)+ T"(a,b) + R"(a.b).

where

Tha.b) =Y St aAlb, T"(a.b)=T"(b.a),

keZ
RMa.b) =Y AlaSt ,b. R'(a.b) =) AtaApb.
keZ keZ
k+1
h h
l=k—1

Considering the special structure of the functions in 55152 (R3), we sometimes use
both (2.8)) and (2.9) simultaneously.

3 Estimate of a Linear System with Convection Terms

Let f,v,u = (u”, u?) be smooth enough functions satisfying

0 +u-Vy +u =0, (t,x) e RT xR3,
Oud +u-Vud —Aud + Ay = f,

(3.1 :
divu =0,

W u?)|r=0 = (Yo, up).

The goal of this section is to derive the a priori L'(R™; Lip(R?)) estimate of u3.
This system is a sort of linearized model for the ¥ and u> equation of (T.9)), which
turns out to be the most difficult part in exploring a dissipative mechanism for (I.9).

According to the heuristic discussions in Section 2.1, when we work on the
energy estimate for (3.1), Ay should be matched with u>. Furthermore, we need
to split the frequency space into two parts, one is {£ : 2|§,| > |£|?}, where both
u> and ¥ have very good decay properties, the other part is {£ : 2|&,| < |£]?},
where the decay rates of u> and ¥ are not uniform. Motivated by this, we first
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apply A; AZ to (3.1) and get that

U AFAMY + AjAR (- V) + AjAMUE =0, (1,x) e RT xR,
(.2 10, A;AM3 + AjAR(u - Vid)
—ANAMUE + A A ATy = AjAR

We emphasize that throughout the paper, we always use Ay, to denote 8%1 + 8)%2.
Taking the L? inner product of the u> equation in (3.2) with A; Azzﬁ results in

2
NN A N2 NV
) + (Bn A7 AR | AjAR)
= —(8; AL Vid) | A AR + (AF AR S | Apajadd).
However, thanks to the -equation of (3.2)) and using integration by parts, we have
(An2; ALY | AjAh ’) =
HV;,A Ay )72 = (AnA; ARy | Aj AR -VY)).

Hence we obtain

d
S8 AW + [Vaa My @ [F2) + [V A AL 0

GH = (AAL - VUd) | A AIP) = (Vid ALY | VA Al - V)
+ (850 f | B AR,

To see decay properties of 1, we take the L? inner product of the u3-equation in
(3.2) with AA; Azw and obtain that

(A AR | AN ATY) — (AA; AMUP | AA; ATY)
+ [Vavas Ay
—(A; AR V) | AN ATY) + (A AR f | AN ALY).
Again thanks to the ¥ -equation of (3.2)), one has
d
(A ALdu? | A ALY) = S8 A3 | AN ARY) — (A A3 | AA;ATyy)
d
:d—(A-Ahu3 | AN ALY) — | VA AR,
+ (A AR AN Al - vy))
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and
— (AN A3 | AA,-AW) =

2dt “AA ARy @)|72 + (DA Al - V) | AA;ALY),

which gives rise to

d(1
TR IA8 ALY OIZ: + (A A | AL ALY)

(3.5) + thVA A 1'[,”L2 ”VAJ'AZu?,Hiz
—(A; AR VR | AN ARY) — (A A3 | AN AR - VY))
— (AN AR - VY)Y | AN ARY) + (A0 £ AN ALY).

Summing up (3.4) with l x (3.3)), we arrive at

d

1
LI (8,80 + Va8 Ay O 2 + 2 as, Aw 0 ]22)

+Z(A,Azu3 | AA; ARY)
VA AL O + IV ALy 1
(3.6) = —(A; A} u-Vud) | A,Ak ) — (Valj Ay | VA AL - V)
- i(AjAz(u-Vuz’) | AN ALY) — %( ud | AN AR - V)
- i(AAjAz(u-Vl//) | AA; ALy)
+ (A,A,’;f ‘ Aj ARG 4 %AAJ-AZW).
Notice that
L1580 | aa;a%y)| < | An; ALy, + 8 ak
one has
LA 2 4 2 |Vias ALy 0 + MAAMH
o =slead POl 1 eyl r[SAT0I N
o0 + %(AJAZﬁ | AAjAgw)

3
< 880l + HVhA Ay O72 + HAA Apv 72
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In what follows, we shall use (3.6) and to derive the L'(R™; Lip(R?))
estimate for 1> and the dissipative estimates for ¥. As in the heuristic discussions
in Section [2.1] we shall separate the analysis into two regions in the Fourier space.
The first part, {€ : 2|&,| > |£|?}, corresponds to the part with j < (k 4+ 1)/2 in
(3.6), and the second part, {§ : 2|§,| < |£|?}, corresponds to the part for j >

(k + 1)/2in (3.6).
3.1 Estimate for the Case j < “5— L in ( .
In this case, thanks to Lemma[ﬂ] and (3.7), one has
2 def 3
02 < 3 (18,800 72 + 1908, Ay O + 1188, 8L 012

+%(A,-A u | AA;ALY)

~ A AR ()| 72 + IVRA; ALY (0)]12,.
Applying Lemma once again yields
[Va; 803032 + VA ALy )] =
szj(HAjA 3(t)HL2 + HVhA A W(t)HLz >0221g]k(t)

For any ¢ > 0, dividing (3.6) by g; x (t) + ¢, then taking ¢ — 0 and integrating the
resulting equation over [0, T'], we obtain

Y, AZM3HL%°(L2) Y AZWHLOO(H)
+ 2% (|| A Aju 3”L1T(L2) + [ ViA;A ‘/’”Ll @)
(3.8) < |a; Ak“OHL2 +[Vaa; Akwo |2
N RS TR TS IR
+ A AL S| ) dr.
Here we have used the fact that
IVAA; AL G- V) llp2 = c2X(| A AL G- V)2
> 2 || Aj AR - V)2 = | AA; AL (- V)12,
and
IVa; A w”Lz > c|AA; AR |2 forj < k—.

Let us now estimate term by term of the last line in (3.8). This will basically de-
pend on the following two technical lemmas, the proofs of which will be postponed
to Appendix[A]
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LEMMA 3.1. Let s > 0 and a, b be sufficiently smooth functions. Then one has
Iy Aj(ab) HLIT(LZ)

<d; 2—1'3( B b bl
6oy Bl g 1B, L5 el s 1Bl o,

3 121l

13 o1, T leall
L7.(B2°3)" "L3.(B%4)

21l

1 ~ 13 )
L7.(8"%) " 'L3.(B2°3)

Here (d; i) kez is a generic element of £(Z?) so that Zj,keZ dj =1

LEMMA 3.2. Let s € (0, %), § € (0,1), and ¥,u = (u",u3) be smooth enough
functions. Then one has

H Aj AZ(“ V) HLIT(LZ)

—is~A—k
< djk2 %2 {||V”||L2T(H1)(”Vhw”]jo(Bgl/E) + thl/f”ZZT(B%%)

(3.10)
VAV 22 -0 + IV 72 81450
1% a5/ 1939 | oo a1y |

for some sufficiently small ¢ > 0.

Remark 3.3. We should point out that the reason that we use the framework of
such complicated function spaces Z% (B°1»51) in Lemma 3.1/ and Lemma 3.2|is to
have d; . in (3.9) and (3.10) with }_; ¢z d;x = 1, which is crucial to derive the
LL(Lip(R?)) estimate for u* in Proposition 3.8 below.

Applying Lemma [3.1)and Lemma 3.2]to (3.8)), we arrive at the following:

PROPOSITION 3.4. Let § € (3.1), 10 € [3.3 — 8], and Yy,u = (u",u3) be
sufficiently smooth functions that solve (3.1). Then for j < (k + 1)/2, there holds

h 3 h
A ARu ||L<;°(L2) + | VhAjAkWHLC;O(m)

2j h, 3 h

+ 2% (||a; Aju HLIT(L2) + ”VhAjAk‘/’”LIT(LZ))
< dj,k2_j(ro_2)2_k8{||u(3)||H1 + IVavolgr + ||u3||L1T(B(5/2)—8~8)||831/f||z%<>(31)
+ ”V””Lzr(Hl)(”V””LZT(Hl) + ||VhW||L2T(1-'11) + ||VhW||L2T(H2))}
+ 1858 F s r2)-
PROOF. Indeed, as 79 € [%, % -6, 6+1—-2¢€[§— %, %], we can split it as
8+ 10 —2 =51 + 52 withs1,s2 > 0. Then since j > k — Ny in AjAZ, we have
h 3 —Jjs1n—k 3
” Aj Ak“OHL2 < dj,k2 7512 s2||”0||BS1.s2
—j(rto—2)~H—ké,,3
< djx2 T2 k8 13,3 g1,

and a similar estimate is valid for V.
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Applying (2.6)), Lemmafors =1—1+6¢€ [% +94, %], and Lemmafor
s=1—-244d¢€ [8—%,%],onehas
[ ) ARG VD) | L1 g2y S 278 ARG |y 12

< dj 2707240 vy | ?

(L2) ~
LZ.(H'Y)
and
HVhAj AZ(” : VW/f)”LlT(LZ)
< A2V 2 VA 2 Gy + 19002 )
+ ””3||L‘T(B<5/2>—5~3)||83W||Z%°(H1)}'

Substituting the above estimates into (3.8) and using once again the fact that j >
k — Np in the operatorA ; Az leads to Proposition O

3.2 Estimate for the Case j > % in Ii
In this case, thanks to Lemma [2.7and (3.7), one has

1
(18 AP O L2 + IVR A ALV Ol + 5 ||AA,A v OI7-)
+ %(AJA ud | AN Aly)

~lasaie i + 14889 O
which along with (3.6), Lemma[2.7] and a similar derivation of (3.8) ensures that

| A ARu 3HL°°(L2) +|Aan; Ay WHLOO(LZ)

2
+‘722, (Ja; a8 3HL' @ T HAAJAIIZ‘”HL'T(U))
G.11) <[ A ARu3] 2 + || AL AR Vo]

T
+c/ (J|A; N 2 -Vu)| . + AL, Al 2 -Vy) |,
+ | A AL S| 2)dr

Here we used the fact j > (k + 1)/2 so that 22/ > 22(k+1) 22/ = Thys the
estimate for this part of (1, u>) can be reduced to that for the last line of (3.11)). In
what follows, for any distribution a, we shall always denote

(3.12) a® Y AjAla and @y E Y AjAla
k>2j—1 k<2j—1
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and

def
(3.13) ||a||L1 B132) = = 22]”2 sup 251 A A aHLlr(L2) forsy.sp € R.
keZ jzk—=No

Here is the key lemma.

LEMMA 3.5. Let§ € (3.1), 50 € (3.8), and 79 € [3.3 — §]. Let Y. u = (u" u?)
be sufficiently smooth functions. Then one has

H Aj Alhc(“ V) ”L‘T(L2)

< dj 277027k || V| (VAW 2 50y + IVRY N2 (4r3))

5
L7(H?2)

+ (”“3”Z1 (Bl,%-i-é) + ||u3”L;(B(s/z)—s.&))||VW||Z%O(H2)}-

T oo,1

We assume this lemma for the time being, the proof of which will be presented
in Appendix [A]

Remark 3.6. Lemma3.5| will be the most crucial part used in the proof of Proposi-
tion [3.8]below. The main difficulty lies in the estimate of terms like

(A ANT TR (u, V) | A;ALy)

due to the anisotropic nature in our Littlewood-Paley decompositions. Indeed,
comparing with the isotropic case as in (B.4) and @]} below, the estimates for
commutators of the form [A” & Sj— IS _ul- VAA kw will lead to estimates in-
volving factors 2/ /2k. Accordmg to the scahng property of L} (L1p(R3)) it would
give a LlT (B3/2:1) estimate for u> provided that the source term f in (3.1) belongs
to L%W(B_l/ 2,1y On the other hand, it follows from the proof of Proposition
that for any smooth enough solution (v, u) of @ on [0, T] f? given by @D
belongs only to LT(B 1/ 2 1) This will lead to a L} (B 3/2, 1 ) estimate for u> in-

stead, and it does not 1mp1y its LlT(Llp(R3)) estimate. The latter turns out to be
the most crucial item in the proof of Theorem|[I.1] This also explains why we need
to work in the more complicated function spaces L%w (B5/278:8) with § € (%, 1) for

u3 in what follows.

With Lemma [3.2] one can deduce, by a similar proof to that for Proposition [3.4]
and (3.11)), the following:

PROPOSITION 3.7. Let § € (3.1), 50 € (3.8), and 7o € [3.3 — §]. Let Yu =
(", u3) be sufficiently smooth functions that solve @B.I). Then for j > (k +1)/2
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there holds

A AZ”3”L%°(L2) +[Aa; AZ‘/’”L%’?(U)
+c(22CD A a00° Iy + o INFNA 21 2)
S 1A AL Ny + 422 [l + 8ol

FIVUl s 45 (99 3 oy 199 13y + 19223 o)

N, ges + 1y er-0m) VY Ty

T \~00.1
where || - ”ZIT(B;}{”‘S) is given by (3.13).

33 L1 (Lip(R?)) Estimate of u>

The goal of this subsection is to combine Proposition 3.4 and Proposition [3.7]to
derive an L} (Lip(R3))-estimate of 1> for solutions of the equation (3-1).

PROPOSITION 3.8. Under the same assumptions as in Proposition [3.1} for any
70 € (%, % — 8], one has

||u3||,. 35 T Iyl - 3145 T ¥oll —Loys
Ly(BL) Ly(BL, LBy

+ ”“3”L1T(BTO~5) + ||1//[||L1T(Bfo.1+8) + ||‘/’h||L1T(Bfo—2.z+8)

(3.14) S gl + 1VVollmz + 1 £ lILy sro-2.8) + LA, -

)
(B

(S

oo, 1

+11Vul 1909 123 azsoy + 1AV 22 iy + 1V2l2 o)

L%(H%)(
+ (||u3||Zl (B%’s) + ||u3||L1T(B(5/2)—8,8))||VW||Z;°(H2)

TV 00,1

with Y, Yy given by (3.12) and || - ”Z‘T(B“{H‘S) defined by (3-13).

PROOF. Thanks to (3.13)), we have

3 1 = 2k(%+8) sup 27 |A; APy

[|lu ||~1T( ;%H) k%; jzk—pNo H J Rk
522]‘8 sup Z%HAJ-AZﬁ”
keZ Jjzk=No

3 “L'T(LZ)

1 = ||u3||~1 3/2.8, .
Lh.(L?) AT
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Notice that since 79 € ( —4§], it follows from Pr0p051t10n and Proposition

3.7 that
”w[”LlT(BfovlJr&) + ||1//b||L1T(Bf0*2v2+5)
< gl + 1V¥ollg2 + 17 Ly (gro-25)
(3.15) 3 .
+ (Jlu I, 35 +lu ||L1T(5<5/2>—6~8))||V1/f||z%<>(Hz)

LT oco,1
+IIWIIL2(H2)(|IVh1/f||L2 oy H IVl 2 3y + IVl 2 1) -

On the other hand, applying Lemma[2.7]to (3.3) gives

[878%0% |gequay + 2 [ 87850 1 o)

< |a; Akl 2 + C %A A%V 1y 1)
+|AjAare- V)| Lt | A AR f || L (L2))

which in particular implies that
it0~k$ h 3
< 2/ A Mg | o + CPOTDRCED A AR 11 12

+ €27 020K (| A AR (u - Vu3)“L1 w2 T Iy, AkaL1 (L2))

Substituting (3.15)) into the above inequality yields
iT0 kS h, 3
Z 27702 H AjApu HLIT(L2)

k<2j+1
3
S ol + 1VYollr2 + 11 F L1 gro—2.9

Z}(Bi’ﬁ) + ||”3||L1T(3(5/2>—s,8))||vw||Z<;<>(Hz)
FIVUI ) (VAP oy + 098 g3y + 19303 1)
From this inequality and Proposition [3.4] we obtain
””3”L1T(BTOS‘3)
< et + 1V ¥ollaz + £ s gsro-2)

0y s+ I ormss)

(3.16) VY sy
+ | u”Lz (Hz)(”Vhw”LZT(HSo) + ||Vh‘/f||L2T(H3)
+ ”V“”LZT(HI))'
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In the same manner, one may deduce that

[ 3II~T( 3. ||w[||~ g1, + ||‘/fb||~T(le,2+8)
< ||u0”H1 + ||Vl”0||H2
(||u3||~ L 0%08) + ||u3||L1T(B(5/2>—5,8))||VW||Z§>9(H2)
IVl 5 (96813 oo
IR0y + 1Vl ) S0, s
Lhs. 2
This together with (3.15)) and (3.16)) finishes the proof of the proposition. O

Remark 3.9. It follows from Remark [B.3|below that if (y, u) is a smooth solution

of (T.9) on [0, T'], the source term £ given by (T.10) belongs only to L 7 (B 1/ 2 8)
no matter how smooth (¥, u) is. Hence we do not know how to improve the a prlori

estimate (3.14) for u>.

4 Proof of Theorem [I.1]

It is well known that local existence of smooth solutions to basically fol-
lows from the a priori estimate for smooth enough solutions of (see [16] for
instance). Indeed, given smooth initial data (¢, ug), instead of the smallness con-
dition (I.TT), under the assumption that | Vg g2 is sufficiently small, we can
deduce from that a smooth enough solution (v, u) of satisfies a local
version of the estimate (4.19)), which ensures that has a local smooth solution
(Y, u) on [0, T*). The uniqueness of such solutions can be obtained by taking the
difference and then by performing an energy estimate. For simplicity, we skip the
details here.

The goal of this section is to prove that T* = oo provided that (v, 1) satisfies
(T.T1)). As a convention in the rest of this section, we shall always denote by (¥, u)
the unique local smooth solution of @D on [0, T™*). We start the proof of Theorem
.by the L1 (Lip(R?))-estimate of u>

4.1 L1 (Lip(R?))-Estimate of u3
Thanks to Proposition we need to provide a LIT (B1/2)=8.8)_estimate of f?

given by (1.9).

PROPOSITION 4.1. Let § € (%, 1), (¥, u) be the unique local smooth solution of
(L.IO0) on [0, T™*), and Y, Yy be determined by (3.12) with v € L;(B(s/z)—8,1+8)
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and Yy, € L}(B(l/z)_‘s’z"“s). Let fV be given by (I.10). Then there holds
”fU”LlT(B(l/Z)f&,é’)
@) S IVulze gy + IV gy + VRV 2 oy
+ ||VW||Z§9(H2)(||¢[||L1T(3(5/2)—6.1+8) + ||Wb||L1T(B(1/2)—8,2+6))=
forany T < T*.
ROOF. The proof of this proposition is based on the following two lemmas.
P The proof of this proposition is based on the following 1
LEMMA 4.2. Under the assumptions of Proposition one has
|87 A% A=A 303902 11 12)
=3 =8)7—k8 2 2
S A2 GV, o+ IV gy
+ ||33‘/f||Z<;O(H2)(||W[||L1T(3(5/2)—6,1+5) + ||‘/’b||L1T(3(1/2>—&2+6))}-
LEMMA 4.3. Under the assumptions of Proposition one has
h
” Aj Ak(a3W8hW)HL1T(L2)
—i(i_ —
S A2 GO 12, L+ IV o,
+ 1939 [l zoo g2y (1WAl 1 57205148y + ”‘/’b”LlT(B“/Z)—&HS))}-

Let us proceed to the proof of Proposition . 1| with Lemma[4.2]and Lemma[4.3]
the proofs of which will be presented in Appendix Bl We first rewrite fV as

3
U= 3 )T P il Y 8s(—A) T ;0,9 v, )

(42) i,;':l iorj#3
— Y 0,039 0;9) — (03(—=A) "' (339)* + 03(339)?).
Jj=1

As divu = 0, by Lemma[2.4] Lemma[2.7] and Lemma[3.1] one gets

<2/ ” Aj Allz(”i”j)HL‘T(Lz)

|74 32 asc-ay- )

L2
i,j=1 (L%

_J 2
< dj,k2 2 ||Vu||L%(H1),
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whereas Lemma and Lemma [.3] ensure that

lasak( > ag(—Arlaiaj[aiwajw]—if’f@waﬂ/’)ﬂ

iorj#3 j=1

—i(A=8)~r—
S 42 EDI V1L, ) IV, e

L(L2)

IVl g oy (Wl 572500 + 1]l 1 gg/2-324) |-

Finally, as 03(=A) "1 (339)* + 83(339)* = —Ap(—A)"193(331)%, we get,
by applying Lemma.2] that

|87 AR[83(=8)"" @39 + 03039 11 (1.2

gy
S 27 V2, ) IV e,

+ ”Vl/’||Z<%°(H2)(“WHL‘T(B(S/Z)—&JH) + ||Wh||L1T(3(1/2)—8.2+5))}-
This completes the proof of Proposition @.1] O

Thanks to Proposition [3.8] Proposition 4.1} and (B.2)), we obtain the following
LIT(Lip(R3))—estimate for u>:

PROPOSITION 4.4. Under the assumptions of Proposition B.1} if, in addition, we
assume that

“4.3) ||VW||Z%O(H2) <co
for some ¢y sufficiently small, then for § € (%, 1), there holds
3
[Vu ”LIT(LOO)

< C{lud + |V + || Vu?
(4.4) < C{llugligr + Vol g2 + |l ||L2T(H%)

2 2 1
+ IVAV 72 soy + IVRV 72 a3y} Forso € (5.6).

PROOF. Note that j > k — Ny for some fixed integer Ny in the operator A AZ;
for§ € (%, 1), one deduces from Lemmathat

||Vu3||L1T(L<>o)5 > ‘|AJA2”3HL1T(LOO)
j.kez?
iy
<D 27}2kHAJ'AZM3”L‘T(L2)
j.keZ?
s Z 2j(%_8)2k8 ” Aj A/}éu3“L%~(L2) 5 ||u3||L%~(B(5/2)_5=5)’
j.kez?
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whereas for sg € (%, 8), it follows from the classical interpolation inequality in
Sobolev spaces that

1YWV gy + 190V 125 oy S IRV 2 oy + IV 25 -

Consequently, thanks to (@-1) and (B2)), we get by taking 7o = 5 —§ in (3:14) that

||Vu3||L‘T(L°°) + ||”3||L1T(3(5/2)—s,8) + ||Wl||LIT(3<5/2>—s,1+8) + ||Wh||L1T(3(1/z)—s,z+s)
3
+ |ju ”ZlT(Bgf{B) + ||wl||Z]T(Bgé?].l+8) + |I¢h|IZ1T(B;1!/12.2+a)

S Il + 190l + IVI2, o 090 oy + IV i,
T

+ ||VW||Z<;°(H2)(||M3||L1T(B(5/z>—a,s) + ||M3||z1T(BC3></>?1-8) T I¥diLy 325145
+ 1¥nllLr gar2-s.2+5) + ”W”Z;(B%?ﬂ“) + ||Wh||le(B;l_/]2~2+8))~

The latter and (@.3)) lead to

||VM3||L1T(Loo) + ””3”L‘T(B<5/2>—5-3) + Wil Ly er2-sa+8) + 1 ¥nllL1 asa-s.2+5)
+ ||M3||le(B(3>é?£8) + ”%”Z'T(Bié,zflﬁ) + ||1/fh||le(B;o1'/12.2+s)

< Ul + V9ol +IVul?, s

FITIV I ooy + IVHHI2s (o)

which in particular yields (4.4). The conclusion of the proposition follows. 0

4.2 Dissipative Estimate of V¥

The proof of the decay estimates of Vv is based crucially on the following
lemmas:

LEMMA 4.5. Let . u = (u", u3) be the unique local smooth solution of (T.9) on
[0, T*). Then for s > —% and T < T, there holds

T
| 108699y 10aplar

2,—2js 2 3 - -
< ¢j2 {||VW||Z%0(H5)||V“ I3 ooy + (||W||L$(B§{12) + ||VW||LC;°(HS))
2 2 2 2
X (HMHZZT(BS’/IZ) + ||Vh¢||Z2T(BZ3(12) + ”VMHL%(FIS) + ||Vh‘/f||L2T(H1+s))}'

Here and in what follows, we shall always denote by (c;) ez a generic element of
(%(Z) so that djez cjz = 1, and d means 0x,, 0x,, OF Ox;.

We shall postpone the proof of Lemma4.5|to Appendix [B] Indeed, the proof of
Lemma4.5]also yields the following corollary:
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COROLLARY 4.6. Under the assumptions of Lemma[4.5] one has

T
/0 (0 (u - V) | 00,9 |di
S G2 IV e ) IV 10y
+ (185%  zae 32y + 1V 250 115))

2 2 2 2
X (”V””Z%(B;/lz) + ”vhwnzzT(B;/lz) + ||Vu||L2T(Hs) + ||VhW||L2T(Hs))}'

PROOF. The proof of this corollary follows the same line of argument as that

in the proof of Lemma {.5] We only need to modify the estimates involving
VAV |l 14 We first use a similar commutator process as in to obtain that

T
/0 |(0A; (T, V) | 94y )|dt

@5) < G2V 2 1o IVR Y D2 | VW | 700 sy

3 2
+ IV Nt ooy VY e 1)

while it follows from and that

T
/(; ‘(3Aj(T33wu3) | 0A; ) |dt
R sz2_2js(||vw”Z‘}O(FIS)”VhW”L%,(Loo)

+ ”a?’WHL%O(LOO)||Vhw||L2T(Hs))||vu||L2T(Hs)

and

T
/0 (34, (R 839)) | 84, ¥)|dr <

2~—2j
Cj2 js”v‘ﬂ”Z%O(Hs)”V“||L2T(H%)||Vhw”L2T(1.’1s)-

This completes the proof of Corollary 4.4] O
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LEMMA 4.7. Under the assumptions of Lemma .5 and for s > —2, one has

T
/0 (A G- V) | AAy)|di

< 022 zjs{va”LOO(H]""S)Hvu:;”L%ﬂ(LOO)
+ (||33W||Zoo(33/12 + ||V1/f||zoo(gn+s))

(||Vu ”L2 (33/2 + ||th||Lz (B3/2)

F VU vy + 190012 i) -

We shall present the proof of Lemma4.7]in Appendix B}

With Lemma [4.5] to Lemma we can prove the following proposition con-
cerning the decay estimates of V.

PROPOSITION 4.8. Let Y, u = (u”,u3) be the unique local smooth solution of

. " i
(L9) on [0, T*). Then there exists a positive constant ¢ such that for any s > —5
and T < T*, there holds

||u3||%oo“~,y) - ||vhw||%oom - ||vhw||%%o(f,l+s)

< lluoll%, +||Vh1/f0||2 +||V1/fo||H1+A

o CLIVY e ey + 1901 e 1) 1V g 2
+ (”VWHZOO(Hz) + ||”3“Z00(1.'1s) + ||Vw||1j00(1.'1s) + ||VW||Z<7>9(1.']1+3~))

(190125 oy + IV 12 o)+ 1V

L2 (B L2 (HA)

F VU, ey + IV 1)

PROOF. From (I.9), we obtain, by a similar derivation of (3.6), that

d 1
B O + VA ¥ @ + 188V O)122)

4
(4.6) = —(Aj(u- Vi) | Ajud) = (VA ¥ | ViAj(u- V)

1 3 1
#3024 29RO + 1V A2

1 1
- Z(Aj(u Vud) | AAjY) — Z(Af”3 | AAj(u-VY))

1 1
- Z(AAJ(“ “VY) [ AA; ) + (A,-f” | Aju® + ZAAJW)
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Applying the standard product laws in Besov spaces, we obtain
3 . — . .
”u -Vu ”LIT(HS) < ”u”L%(B;/IZ)HVMHLZT(HS)
”u : VI/’||L2T(H1+S) < ”u”Z%(B;/]Z)||VW||Z<%O(1.'I1+S)
+ va”Z%O(B;/IZ)HVMHL%([JU)

for s > —%. We hence deduce

T
/0 ‘(Aj(u-Vu3) ’ Ajuz’)}dt

2~=2j 3
scjz Js||u ”Z;{O(HS)”u||Z%~(Bz3/12)||vu||L%‘(Hs)’

T
fo (A (- V) | AN |di
D < GBIV lipge ey Il 22 5372 IV L3 gy
r 3
/0 (A | AA; (e - V) |di
2~—2js 3 .
§Cj2 ||Vu ”LZT(HS)
X (HMHZZT(B;/IZ)”Vw”Z%O(HIJ”) + ”Vw”Z‘}O(B;/]z)||Vu||L2T(H~Y))‘
Next let us turn to the last term in (4.6). By divu = 0, one has
3 /T
im=1 0

S A (u- Vu)||L1T(L2)(||AAj1/’||L<;°(L2) + ||Aju3||L<;°(L2))

dt

1
(Aj83(—A)_1[8,-u’"8mu’] ZAAJ'W + Aju3)

S P27 ulz3 a2y IV 3 oy (199 g vy + 1% e )

Using integration by parts and product laws in Sobolev spaces, one further deduces
that

T
3 /0 |(8705(=2) 7" 0;0m [0 Y dm ] | AA;)|di

i or m#3
< C?Z_ZJS”VWVhWHL%_(HHs)“vhw”L%(HH-s)
< CJZZ_ZjS(HVWHZ%(B;/IZ)||VhW||L%(H1+s)

+ 1V¥ e ey 1 ViV 22 27 IV 2 -
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The same estimate holds for fOT [(Aj divy (03¢ V) | AAjv)|dt. In the same
manner, we have

T
/0 |(893(=A) " Ap[03y]* | AA;y)|dt
T
:/0 [(A; Va[039]? | Aj V039 )|dt
< Cf2_2js||33WVh33W||L2T(Hs)||vh33lﬂ||L2T(Hs)
< 6]22_2js(||a31ﬂ||z%0(33’/12)”VhWHLZT(HH-s)
+ ||Vh1/’||z%(33(12)||331ﬁ||z<7>9(31+s))||Vh1/f||L2T(H1+x)-
Notice that for s > —%, we have from Bony’s decomposition

(4.3) ||V¢VVhW||L2T(Hs71) + IIVWVWIILZT(HS) <
1V z50 532 1YV 2 ey + 1YV I zse o IVaY I 2. 3372

Consequently, one has

T
/ (A (=A) ' AR33(039)? | Aju)|dt
0
2~—2j
S cj2 ]s(”w”f}%o(gi/f)”Vh‘/’”LZT(Hl—i-s)
+ ||V1/,||Z(’;O(HS)“v}lw”Z%‘(B;’/lz))||Vu3||L%—(HS)'

The same estimate holds for

T
3 fo (A 03(= ) 10000 ] | D) d

i or m#3
and fOT [(A; divy, (339 Vi) | Aju)|dt. We thus deduce from (@.2)) that
r 1
/0 (A 7 | ZA8 ¥ + Aje®) |dt
25-2; -
(4.9) S ¢2 js(||1ﬂ||zz;o(3;{12) + ||VW||zc;o(B;(12) T IV zoo sy

+ ||VW||ZE;9(H1+S) + ||u3||ZC%°(Hs))
2 2 2 )
< (V125 grny + Tl vy + I 125 gy + 1903 )
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Finally, by Lemma [2.7] Lemma [4.5] Lemma (3.7), and @.6) to @.9), we

conclude that
18703 o 2y + IV 2 ) + IAD Y 2o
+ 2 (1870125 ay + 190022 02)
< 1Aju3lZs + IVadjvoll > + I1AA ol 7
+ CPT 2 (19 e ey + 19 e ) 1V I 2
+ (||W||zc%o(323f12) + ||u3||z<7>9(Hs) + ||V¢||zc%o(33512)
IV I zso gy + IV | Zoogarron)
X (||“||222T(323/12) + ”Vhw”%%(}é%z) + ”anzzT(Bgff) + ||VhW||IZJzT(H1+S)

VU2, o+ V12, 1)

Multiplying the above inequality by 22/%, summing up j over Z, and then making
use of the fact that

lall g32 < [Vallpgr.

1337
we can complete the proof of Proposition 4.8] O

Remark 4.9. By using the commutators estimates in the appendix of [8]], one can
get the following more precise estimate:

/()T\(Aj(u-vm) | AN W) + (Aju? | AA;(u - Vy))|dt
S G2 (Il gz 532 IV ¥ I
+ ||VW||Zoo(3§{12)||V14||L2T(Hs))||VM3||L%(H‘Y)-
As we shall not use this estimate in this paper, we won’t present the details here.

Remark 4.10. Let f = (f", f) be given by (T.10); we deduce by a similar proof
of (4.9) that
T
|1 1 awar
(410) ) cfz_ZjS(Hl/f”Z%o(B;/lz) + ”VWHZ%O(HA) + ||u||Z%°(HA))

2 2 2 2
X Ull'~ . + v ~ N —|— V . + Cu . .
(” ||l2(B;/12) ” hW||l%(B§/E) “ h¢ ”lz(HH'S) ” ”[%(HS))
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On the other hand, instead of (4.8), the standard product laws in Sobolev spaces
also ensure that

vavvlzl/f“LZT(Hs—l) + IIVWVMPHLzT(Hs) <
1990 oo 5372 19 12ty + IV 9 o 100 72 372

which gives rise to

T
/0 (A7 (D) A3 (@39)? | Ajud)ldr
S A2 (VY lzae 52 IV L2 iz
+ thWHZZT(B;/f)“VWHZ%O(Hs))||Vu3||L2T(Hs)-
The same estimate holds for

T
S [ 1080 0y | A

i or m#3

and fOT |(A; divy, (339 Vpy) | Aju®)|de. As a consequence, we infer from (#.2)
that

T
|1y s
0
@1 s G2 (VY g s272) + IVV lIzgeqasy + 1 I 2o ars))
2 2 2 2
X (3 (gar2) + IVaV T2 g3y + VRV IT oy + IVHIZ G-

It is easy to observe from the definition of /# given by (T.10) that a similar estimate
to (4:1T) also holds for fOT (A £ | Ajuly|dt.

4.3 Proof of Theorem [I.1

With the previous preparations, we are ready to complete the proof of Theorem
[[.1] As discussed at the beginning of this section, let i, u be the unique local
smooth solution of (1.9) on [0, T*); it suffices to show T* = oo provided that
there holds (I.11)) for some sufficiently small ¢o. For this purpose, we show first,
by using a similar derivation as that of (3.3) from the u"-equation of (T.9)), that

1d
S 18 O + 1V AU I = (Vads Ay | Aju) =

— (A - Vuly | Apuly 4+ (A | Ajuh).
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By divu = 0 and the ¥ -equation of (I.9), we have

—(Vids A9 | Aju™y = (338;9 | A; divy, ul)
= (0309 | A;d3u>)

_1d
= 31870V O}z + (8039 | A;93( - V).

which implies that

d
EE(IIAth(t)IIiz + 187839 ())2,) + VA" |2, =
— (Aj (- Vuly | Aju”)y — (8039 | Ajds(u- V) + (A; 7| Ajuh).

In the same manner, we deduce from the ¥ - and u>-equations of (T.9) that

> dZ(IIA W7, + 1A, Vay()2,) + VA3, =
—(Aj(u-Vud) [ Aju?) — (A VY | AjVu(u- V) + (A £V | Aju?)

As a consequence, we obtain

1d
(4.12) Ed—(IIAJM(f)lle + 1A, VY OlIZ.) + IVAulz, =

— (A - Vu) [ Aju) = (A VY [ AjV (- Vi) + (A f | Aju)

for f = (f", £?) given by (LT0).
Thanks to Lemmad.5] (.7), and (4.10), we infer from (4.12) that
”AJMHLOO(LZ) + 114, V‘PllLoo(Lz) + 114, Vul7
< [1Ajuol72 + IVYoll7-
+ CPT IV 2 3y 1V g (1)

+ (ullzge iy + 19 oo 272 + IV W 250 azs)

L2.(L?)

(4.13)

2
< (IlZ; gz, + 193V 175 372,

2
VU o+ IVAV I 1)
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fors > —% and T < T*, while it follows from Corollary @), and @.1T) that

1
for s > -3

1871 Ze0 22y + 187V I eo 2y + 14, VHZ2 (12
< lAjuoll?, + Vol
+ C POV o ) IV 1)
(4.14) _ 9 Vyllz
+ (Il zgo sy + 1039l peo g2y + IVY llzgocgiies))

x (Il ooy + IV, o) + IVRY I, 5o
VU, ey + IRV 12 i)

Combining @.13)) with (#.14) and summing up the resulting inequality for j
over 7., we arrive at

2 2 2 2
b gy + 1By + 199 By IV 2
2 2
+ ||Vu”L2T(HS) + ||V”||L2T(H1+s)

< ol + Mol 21y + V%ol 2y, + IV V0N 14
+ CLUVY e g1y + IV o)) IV 1 )
+ (Wl zee 3272 + 1939 | oo 372) + 1l zgo sy + Il Zgo ey
IV Iz oy + 199 Iz )
x (I3, gary + 1V, o) + VYIS

(4.15)

L3.(B; L2.(85'D) + IIVulle (H?)

F VU iy + VY125 14|

for s > —% and T < T™*.

For ¢y sufficiently small, we define
TS max{T <T*: IVYll oo g2y < Co}-

Then by (4.4), Proposition 8] and a simple interpolation inequalities in Sobolev
spaces, we obtain from (#.13) that

4.16)  lul?

2
L IV 12 gy + IV VI

e (IVHIZ5 gy + IV ey + IRV 2 1)

2
+ ||u||Z%O(H]+s) LOO(H]er)
< C ol + ol + 19W0l%, + IV 9012,

IV 1o oy IV o 1) (3l + V0 l22) +
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+ (||V¢||Z%0(H2) + ”””Z‘;"(HS) + ||“||Z<;<>(H1+s) + ||VW||Z<%O(1:1AY)
2 2 2
(YU, s+ I 12, iy + 1912,

T
IV o+ IVUIE gy + VAV 1)}

fors > —1, So > %, and T < T. In particular, we can assume that s1, s, is given by

Theorem By separately taking s = 51,50 = 1 + 51 > 4, and s = s, > 3 in (£.16)
and then summing the resulting inequalities, we conclude that

(20 g1y 100300 sy + 198 e ory + 198 130 g0 (1 = Co)
+ C(Hvunzzr(gsl) + ”VMHIzPT(HSz) + ||Vh1ﬁ||22T(H1+s1) + ||Vh‘/f||22T(H52))
= C{Iluolli-,sl + IILtollf,i-,s2 + ||V1/fo||i-,s, + IIVl/follfq,s2
(4.17) + (el zooggsny + 1l zooasay + 1YV I zeo s
IVl zgqaony + IV s grony + VY o o)
< (VR IZ2 gessy + 1VAY 172 s

IV gory + 190022 o)

forany T < T and ¢ being given by (T.TT).
Let us denote

7 def 7. 2 2

2
(4.18) + vy IV Izeo 52

< 4C (JuolZys, + ol + V%000, + 1V¥0l%0,)}-

z .
Ly (HEs1)

If we take o in (T-TT)) is so small that co < o/4+/C, we would have 7 = T. In what
follows, we shall prove that T = T* = o0 provided that o in (L.TT) is sufficiently
small. Indeed, if T < o0, @D ensures that

2 2 2 2
2 2 2
+ (C - 6CCO)(||VM||L%(H31) + ”VM”L%.(H~‘2) + ”Vh-l//”L%(HlJrsl)
< C(lluoll%ys, + luollZysy + IVl +I1VYolF,) forr<T
- HS1 H52 HS1 H*2 -
In particular, if we take
1 C EO

co < min{ —

2C°12C " 4/C )’
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the above inequality ensures that

el + ull + Vvl +IVy iz

L (H2)
+C(||;u||22 s +||;“||22 s +||;h‘/f||22 T 14s
LT(H‘I) LT(H‘2) LT(H 51)
\V/ 2 o
” h¢||l%~(H2))

< 2C (luollFys, + luollZysy + 1V¥0lFe, + IVYolF,,) fore<T.

2 2 2
Lee(as) Lee(H%2) oo )

(4.19)

This contradicts , and this in turn shows that T = T* = oo. Moreover, it is
standard to deduce from (T.9) and (#.19) that Vs € C([0, 00); H*' (R*) N H*2(R?)) and
u € C([0,00); H1(R®) NH*2(R?)) (see [1] for instance). This completes the proof of
Theorem [L.1] ]

Appendix A Proofs of Lemmas [3.1,3.2, and

In this appendix, we shall present the detailed proofs of the lemmas in Section[3]

PROOF OF LEMMA Bl Applying (2.8)) and (2.9) we get first that
ab = (T +R)(T" + R" + T")(a, b)
(A.1) =TT"a,b) + TR (a,b) + TT"(a.b)
+ RT"(a,b) + RR"(a,b) + RT"(a,b).

Considering the support properties of the Fourier transform of 7 T (a, b) and using (2.4),
we have

”AJ'AZ(TTh(a’b))“L‘T(Lz)s Z ||Sj/—1SIftl/—la||L2T(L°°)”AJ'/AZ/bHLzT(LZ)'
b hizs

Using Lemma 2.7 one has

” Sj_lS,i’_la HLZT(L°°)

< Y Y 2f|ayajala
J/<j—20=j"+No
k'<k—2

s > ﬁz"’HAﬂAQ,a
j'sj-2
k'<k—2

i/
S Y 22 Ay akal e <28 lallp s,

J'<j-2
k'<k—2

|L27(L;;°(L%))

(A2)

}LZT(LZ)

as j' > k' — Ny for some fixed integer Ny in the operator A j/Ah,. The latter and Remark
2.6l1ead to

|8 AT T @, D)1y 12y S dik27 a2 a3/ 1D 22 5514y
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The same argument leads also to

| A7 AR RT (@ b)) 1

(L?)
< ) arabal eSSt ibl 2 oo
Jj'=ji=No
k'—k|<4

A - .
S di 2 all g3 sy 1Bl 23 37,
By a similar proof of (A.2)) , one gets
n !
” Sj’—lAk/a”LzT(L%(Lgon Sdp2” 4 ||a||Z2T(31/2.3/4),
which along with Lemma[2.7]ensures

|8 ARTR @.0)] 11 12,

S 2k Z ” Sj/_lAZ,a

L5%) A Alb

}LzT(L%,( ‘LzT(Lz)
lj/—Jjl<4
k’>k—Nq
<2k djr 27727 al|z 15117
~ 'k L7.(B'/2:3/4) 1T LT (Bs:1/4)
lj/—jl<4
k'>k—No

< dj,kz_jS”a||Z2T(31/243/4)||b||Z2T(Bs.1/4)-

The same estimate holds for A; AZ(TT” (a,b)). Furthermore, applying Lemma once
again, one obtains

|8) AR RR @)y

(L2)
k h h
52 Z ||A1/Ak/a||L%(L2)||S//+2Ak/b||L%(L%(LEQO))
J'zj=No
k’Zk—No

S djk 27 llallzz g1 1P 22, (51/2.3/4)-

The same estimate holds for A; Az (RT"(a,b)). This completes the proof of the Lemma.
O

PROOF OF LEMMA As for (A1), we apply (2-8)) and (2.9) to obtain first that
(A3)  u-Vy =TT"u, V) + TR u, V) + RT (u, Vi) + RR" (u, V).

By the support property of the Fourier transform of T T" (i - V), for any £ > 0 we get by
applying Lemma [2.7)and Remark [2.6] that

A AR T" (u, Vi) ”L}-(Lz)

S B R
lj/=jl<4
|k'—k|<4

< djR2 27 |u 2 VAW 72 s1ssey
Js ” ||Z2T(Bz%lg)|| 1p”LT(Bl-H,F)

|A; AL VY|

2 2
LZ(LF (L) LE.(L)~¢ (L3))
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It follows from the same line of argument that
| A AR RT - VYD 1y 12,

h h

S 2 18rSE oz ase a2 8 VYl w2 wse)
J'2j—No
|k'—k|<4

—jsn—k
< d./',kz 772 ”u“ZZT(Bl-H‘-l/“)”Vhw”ZZT(B‘/Zﬁ/“)'
For any § € (0, 1), Lemma[2.7]yields
h i h
”S'/—lAk’uS”LIT(LOO) 5 Z 22 ”AEAk’”S”L‘T(LZ)
{<j’'—2

_ _ 4
< Z dy 27807802 k5||u3||LlT(5<s/2>—a,s)

{<j’'=2
{>k’—Ng

3
< dp2 k ||u3||L]T(B(5/2)78‘8).

From the latter and by taking into consideration the time integrabilities of V1 and d3 v,
we obtain, for any ¢ > 0, that

| A7 ARTRY YY) | 11 12

S Z (1S Ap” ”LZT(L% (L)) [A) Sl?urzvhw ”LZT(L;O(L%))

1851880 | Ly oy | 85788 1203Y [ 50 1.2))
< dj’k2_js2_k (||u ||Z2T(Bl/z.1+a) |V ||Z2T(Bs~l—8)

+ ||u3||LlT(B(5/2>—6.8)||331/f||2<;0(35.1))~
Finally, as j > k — Nj in the operator A; Ai and s € (0, %], we deduce from
3,
1A, AZ“3||L1T(L2) S A2 F 2R gsa-asy Y6 €00, 1]

that
|8/ ARRRY VYD 1y 12,

5 Z (” Aj/AZ/uh”L%(Lz) ‘}Sj'+2S£’+2thHL2T(L°°)
Jj'=j—No
k’>k—Ng

h 3 h
+ [ Ay A HLlT(Lz)”Sj’+25k/+23310||L%o(Loo))
S a2 2 (1l 2. 55 1AV D 2 372
+ ”u3||L'T(B(5/2)—5’5)”831//”Z§’9(1§5.1))'

Summing up the above estimates and using @, we complete the proof of Lemma (3.2
O
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PROOF OF LEMMA Via Bony’s decomposition (2.8)) and (2.9)), we decompose u -
Vi as in (A3). For § € (3., 1), we splititas § = 1 + & + & with &1, &, > 0. Then it
follows from the proof of that

h k(Ll—
“Sj—lSk—lu”LzT(LOO) $ 2% 81)""”%(338‘)'

From this and the support properties of the Fourier transform of 77" (u, Vi), we deduce
that

| A ART T - V) HUT(LZ)
S 2 1SSl e |87 80 VY 12 1)

lj/—jl=4
|k’ —k|<4

(A4)
. A—Jjton—k§
Sdjg27772 ||u||zzT(lej£1)||Vh1/f||L2T(Bf0+1~82)-

To estimate TR"(u, Vi), we first need to distinguish V; and 93y and then we use
their time integrabilities. Let &g € (0, (1 — §)/2); it is easy to check that

|8 ARTR " Va1 12 <

| Xlz [8—1 A" ||L2T(L2/5(L3°)) (INZYae /Y ||L2T(L2/(2_5’(L%)))'
J'=jl=4
k' =k—No

Applying Lemma[2.7] we get

|Sjr—1 Ap " HLZT(L;‘/“(L%"))

< Y 25K-Dyaal

{<j’=2
ZZk’—N()

< Z 2L(1+e0) pk’ (15% —e0) |Aacal
l<j’'—2

” ||L2T(L2)

h

U “L2T(L2)

< dk/||uh||~2 1+eg.(1—8)/2—

~ L7 (B T¢0: £0)"
A similar argument yields

h —j’ §
”A/’Sk/+2vhw”LZT(L;‘/(Z_‘”(L%))) <dj27/ (ro+ )”Vhl/f”ZZ(Bro-&-&.S/z)-

This leads to

(A5) A 8L TRY P Vi) 11 12 <

dj,kZ_j(rOJ”s) ||uh ||er(31+50,(175)/2ng) Vi ||Z2T(Br0+s,8/z),
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whereas Lemma[2.7)and (3:13) lead to
. h .3
H Sjr—1Apu HLIT(LOO)

S 2T AL gy + D 2525 | AcAb Ly 1

L<k’ k’SéSj’—Z
-/ e k/ ¢
< Jo K8y ¢ L
S a2 27r 3028 42 Y 2 gy s,
£<k/ k<t

<d /271(’8 3 )

< dk el s1.072+8)
The latter implies

||AjAZ(TTh(u3783W))||L1T(L2)

< Z ||SJ"—1AZ’“3HLIT(LOO)HAJ"SI?'—183‘/’“LC;°(L2)

[j/—jl<4
|k'—k|<4
. —_f/to —k/(g 3 - - .
S ) dpdp27 2y ”Llr(B;j“l/z)“)”a3w”L?°(B2Tf’l)
il
—k|<4

<d: 2—j1:02—k8 3 9 S .
S djk flu ”LIT(B;;)(,II/”H)” 3Vl e (59
We then deduce, by a similar argument as for (A-4)), that
| A, AL(TR! 3, 059) s
h 3 xXh
R Z |Si—1 Ak u ”LZT(LOO)“ Aj/Ak/aW“L%(LZ)

lj/—jl<4
k’>k—No

. ~—Jjton—ké8y,,3 _
S dpe277027 u ”ZZT(Bz'jel)”Vhw”Lzr(B’O“@)
for the same &1, & as in (A.4). As a consequence, we obtain

” Aj Al}é (TRh (M3, 331”)) ”LIT(Lz)

=< ||A]A2(Tfh(u3,a3w» ||L1r(L2) + “AjAZ(TRh(M:;,83W))||LJF(L2)
(A6) e
Sdjg277%2 k8{||u3||ZlT(B;§1l/2)+s)||331//||Z%o(32rol)

+ ||u3||Z2T(B;j81)”VhWHI?T(BTOHsSz)}-
Next, let e3 € (0, %) and apply Lemma We obtain

[NZeYNAL]
L2(L, "3 (L$)

$2 3 Al v 0 3
L<j’+1 g

39
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< 2K ae) N 95K G-I A ALY |2 1)
£<j’+1 '

< J,,7i 9K (5+5—¢3)
Sdp2/27% 2 ”Vhw”Z%(BI/Z,Bf%)
and
n o kK (1—
”ijSk/,luH 2 <dp2™’ (fo+1)ok"(3 83)““”[

= 2 ‘E()+1.L ’
L2(L,3 (L?) T(BYT2)

which gives rise to

[4) ARRT @t VYD 1y 12

< Z ” Aj/S,?,_lu HL2T(Li/s3 (L2)) ” S_,~/+2Ah,Vw HL%(L?,/(I_%)(L%O))
J'=j—No
|k'—k|<4

< dja 27027

(A7)

Vel -

2T(Br0+1%) 257254y

Finally, by the support properties of the Fourier transform of RR” (u - Vi) and the time
integrability of V¢ and d3, we obtain

|2 AR RR . VYD 1y 1)

< 2 Uarsia|asSi2SE Vi | 2 )
Jj'=—No

k’>k—N
(AS) > o =+ || Aj/AZ”ﬁ”LlT(B) ” Sj’+2SI}c1/+283w||LC;°(LOO)}

—jton—k8 (),,h
< dj,k2 /702 (||u ||Z2T(BTO~5) ||Vh1/f||L2T(Loo)
+ ”“3||L1T(B‘5/2)—5~5)||a3w”i<;°(32ff>1”*‘))’
where we used the fact that 7y € [%, % —d]sothatg +6 —1 < % and
h i(2—8—
RSNV PN L (V) PP
Combining @—@, we arrive at
AR
| A Ak -VY) ||L1T(L2)
< djg2 702 |V IVav

FIVR L nad) + 1TV o)

L%(Bl/Z,sz%) + ”Vhw”L%(B;/f)

L%(H%)(
+ (I|u3||zlr(5;t'll/z>+s) + ||u3||L1T(5(5/2)—5,5))||VW||Z<%°(H2)}-

From the latter and (2.6), we conclude the proof of the lemma. g

Appendix B Proofs of Lemmas 4.2}, 4.3, 4.5} and

The proof of Proposition {.1]is complete provided that we present the proof of Lemma
B.2]and Lemma[d.3] which we give now.
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PROOF OF LEMMA B2l By applying Bony’s decomposition (2.8) and (2.9), we see
that
Y Vidsy = TT" (D39, V4d39) + TR (339, Vidsy)
(B.1) + RT" (339, Vidsy) + RR" 33y, V,,059)
+ TTH @3y, V3059) + TR (39, V4d3¢).

Considering the support property of the Fourier transform of 7' T" (33, V;,d31) and tak-
ing into account the different regularity assumptions of V¥ and 5, we get, by applying
Lemma 2.7} that

| A; Al divy, (= A) 105 (RT" (33, Vidsv)) e

<hok 3 “Aj/S,f,_133W||L;°(L;°(L%))
J'zj=No
|k’ —k|<4

x (” ZJ"AZ’Vha3‘/’[ ||L1T(L2) + “ Zj’Az'VhaSlr’fh “LIT(LZ))-

From this and Definition[2.3] we conclude
| A A% divi(=28) "' 33(RT" 339 Vads¥)) | 1 (1,

4 i'(1—8) n—k'$
<22 Z djr 2’ (1-8), (“331//”1300(35 )||Wl||L1T(3(s/z>fs,1+s)
J'zj=No 21
|k'—k|<4
+ ||33W||Z%o(gg/12)||lﬂh||L1T(3(1/2)—8,2+8))

iy
<d;j27/G@70 k8(||33‘/f||zoo(321/12)||‘/fl||L1T(3<s/2>—s,1+s)
+ ||331/f||5%0(3§/12)||1/fb||L1T(B<1/2)—5.2+5))~

Following the same line of argument, we have

|A; A divy, (—=A) " 05(T T" (339, V3d39)) }|L1T(L2)

<272k ||sj/_ls,ﬁ,,la31/f||L%o(Lw)||A,,Ah,vha31/f||L1T(L2)
lj/—jl<4
|k'—k|<4

< dj,kz_j(%_‘s)fk’g(||331ﬁ||Zo<>(321/12)||WI||L1T(B(5/2>—5,1+6)
+ ||33W||Z§o9(323’/12)||Wh||L1T(3(1/2)fsiz+s)),
and
| A7 A% diva (=) 93T T" @39, Vds¥) | 1 12,
S D 1ArSE 05V lige | Si-1 AL VA0V | 1 ooy <

l//—jl<4
Ik'—k|<4
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—i(k—gyn—
< dj 27 k8(||331ﬂ||]:00(32%’1)||W[||L1T(B<5/z>—a,1+a)
+ ||83W||Z<;°(B§{12)||wh||L1T(B(l/2>—8~2+5))-
Next, by applying Lemma once again and using the fact that § € (%, 1), one gets

| &) A% diva(=2) 7 93(RR* @39 Vids )| 1y 2,

<27k Yy ||Aj/AZ,aw”LzT(LZ)”Z‘,./S,’g,ﬁvhaw|}L2T(LZO(L%))
i

_J _k
s27mk Y ok
J'=j—No
k’>k—No

which along with Definition [2.3]ensures that
| A A% divi(—2)"83(RR* @39 Vidsy) |

Ay AL Vadsy HL2T(L2) ” ZJ'/SI?'HVha?*W ”LzT(L;Q(L%))’

()

A I .
<22 djr jr 277 02K, Yl 22 s 50 VRV | 72 51,602
7 ( ) 7 ( )

J'zj—No
k,Zk—NO

il _syAe
S 422N gz 2072 | ViV 23 gs1.072)-
Similarly, we have

A7 A% diva(=8) " 93 (TR @39 Vids )| 1y 2,

S Z S5 A3y ”LZT(L% (L) ” AJ”SI?f+2Vh83W ”LZT(L;;O(L%))
F=k 7o

—i(L=8)~A—k
< dja 27T D72 (s2-s02) I VRV I 22 51,62y

The same estimate holds for divy(—A)~195(TR" (93, V,d3)). We thus conclude the

proof via Lemma[2.4]

Remark B.1. It is easy to see from the proof of Lemma [.2] under the assumptions of

Proposition 4.1} that
A A% AR (=2)"" 05039 11 (1,

4 n—k8
< cj222 {(||83‘”||Z<;°(32‘(3)”‘Z"“Z;(Big?f‘“)

+ ”83W||Z%>9(B§!/12)HWU||Z]r(3;olg/]2~2+5)) + ||VhW||2Z2T(Bl.8/2)}'

PROOF OF LEMMA 3]l Similarly to (B.T)), we apply Bony’s decomposition (2.8)) and

29) to get that
Yy = TT (339, ) + TR D39, 959) + RT" (339, 9,9)
+ RRM @39, 9py) + TT (039, 04 9) + TR (339, 959).
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Considering the different regularity assumptions of ¥ and ¥, given by (3.12)) and apply-
ing Lemma[2.7] we obtain

|87 AR RT" @39 059D | 1y 12,

52% Z HA/’SI?/—133W”L;O(L;O(L%))(”ZI"AZfah‘/ff||L‘T(L2)
et
B + “ 5/”Az/ahl/’h ||L1T(L2))

|| Y ||L1T(B(5/2)—5.1+5)
1

S dj 2GRN (osy
LF(B;
+ ||331/fh||z<%o(33(12)||W||L1T(5<1/2)—8.2+6))-

In the same way, we can get

| A7 ARTT @39 909 | 11 (12

< 2, (HAJ'/SI?/—183W||LC;O(L2)”S//—lAl}é’ahw[HL‘T(L“)
li/—Jjl<4
k' —k|<4

+ ” AJ”SI?’—133’\”“L;°(LOO)“SJ”—IAlléfahWh “L;(m))

_il_sy
<djx2 J3=8)9 k(1+8)(||831ﬁIIZ%Q(le/Iz)||1ﬁr||L1T(B<5/z)fs,1+s)

+ ||33Wh||z<%o(323/12)||W||L1T(B<1/2)—s.2+a))-

The same estimate holds for 7T (93, 9,).
Next, by Lemma[2.7] we obtain

|A; ALRR" (33 0n ) ||L‘T(L2)

% i~k h X, qh
S22 Z 272 H AjrA /Vh‘/f”LlT(m)) ” AJ"Slc'+2a}ﬂr’f||L<;<>(L;°;>(L%))
J'zj—=No
k'zk—No
— il gy s
S djp27 /G2 k(H&)||VhW||L2T(B<3/2>—s.6)||VhW||Z2T(Bl/2.1)-
It follows from the same line of the proof that

| A ALTR @3y 959)) [ 1.2
i’ ~—k! h L
< Z 2772 ”Sjr_lA /Vhl//”Lzr(L%,(LSO)))||A/'/Sk’+2ah1/f”LZT(L}OIO(L%))
li'=jl<4
k’zk—N()
_i(l_gyA_
< dj,k2 i 8)2 k(l+6)||Vh1//||Z2T(51/2.1)||Vh1//||L2T(B(3/2)—3.5)-

One derives the same estimate for the term TR" (33, 9,)).
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We consequently arrive at
” Aj AZ (CEY A ||L1T(L2)
< dp 2 IR G, im0V 2 51721,
+ ||33W||Z§-9(321{12)||WI||L1T(B<1/2)—5.2+3) + ||331/f||z<%o(323»(12) ||1/fb||L1T(B(1/2)—s.z+a)},
which along with Lemma 2.4]leads to Lemma[4.3] O

Remark B.2. By a similar proof to that for Lemma.3] we have
” Aj Aﬁ(azwahWHL;@z)
S 222 F DV 1o 1) IV 12 1721,
+ ”831//||Z%°(lef12)HVI‘HZIT(BZ?I'IH)
+ 105 e 272y 1Vl 1220, -

Remark B.3. With Remarks [B.T|and [B.2], we can conclude from the proof of Proposition
BTl that
iy Vb IV Gy I i, + I

+ ”VWHZ%"(H%(HW‘”ZIT(B;Z?IJ”) + ||1/fh||Z1T(B;01./12,2+5))
forany T < T*.

Finally, let us turn to the proof of Lemmafd.5]and Lemma[d.7] which have been used in
the proof of Proposition 48]
PROOF OF LEMMA L3l Using Bony’s decomposition (2.8)), we see that
u-Vy =T,V + Tyyu + R(u, V).

We shall deal with u” - V4 and 4333y separately using various time integrabilities of
V¥ and 03 . First, one observes that

h
185 T Viliyazy S D0 18— lle2 ooy 185 Va2 12
lj'—jl=4
<27 ||L2T(Loo)||vh1ﬂ||L2T(H1+s)
and
h h
”AI(TVhw” )||L1T(L2) < Z ||S"—1VhW||L2T(Loo)||Aj” ||L2T(L2)
li—jl=4

A—j(s+1) h .
< ¢ 27NV 2 ooy IV 2 gy

For s > —2, Lemma(2.7|implies

3/ ~
18 (R iy D Iy 2y $2% 0 D0 18" 2 2y 185 Vb ll2 1)
J'=j—No

SR TE Al 7] PPN S0 (o
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As a consequence, we obtain

T
/O |(0A; " - Vipy) | 04 y)|dt

—2j h
(B3) S B2 (23 gz IV 2

+ 1Vl 3 iy | V¥ 2 (522 IV ¥ 5o

Let us turn to the estimate of (A (u3d3y) | dA; ). By a standard commutator pro-
cess (see [ 1] for instance), one writes

(04;(T,3039) | 0A;9)

= Z {(10A): Sj—1u?193A,9 | 9A;¥)
(B4) |j’—=jl<4
+ ([Sjr—1u® = 81”100 038 9) | 0A;9)}

+ (Sj—1u? 930,09 | A V).

The classical commutator estimates (see [1]] for instance) imply that

T
/ |([3Aj;5j/—1u3]33Aj’W | 8A,1//)|dt
ljr=jl<4*®
(B.5) S 2 ISVl oo 19385 W g 180V ey
lj7—jl=4
< c}2‘2/5||Vu3IILIT(LOO)IIVWII%%O(HW

Since

(Sj—1ud38;0y [ M) = —(S;-193u A9y | A ¥),

the estimate also holds for fOT [(S;j—1u333A;0y | 9A;4)|dt. We apply Lemma
to obtain

T
/0 (1S7-10® — S;—J0A;038,0) | DA ) |dt
|j'—jl<4

S D0 1SV = S Vil ooy 1987V 1 o 12
[j/—Jjl<4

S G2V Ly 100y VY I o sy

The above together with (B.4)) leads to

r 24—2j 3 2
B.6) [ 108)Tp020) 08, 900d1 5 2T g ) I
Next, it follows from the proof of (2.7]) and divu = 0 that

, h . h
(B.7) w? = 27 (divy & + 3A%3) = 277 (divy, & — divy, Adu?)
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with
L o . —1,~ —7
_)Aka def(f;,’lay AfLa), A O r-1G, 277 £)a), Ala EF U@ Ea),

where @, (§) = —i&,3(€)/|€? and § is defined as in (2.7). Applying (B.7) and using
integration by parts, we have

(04 (Toyy1®) | 94, ¥)
= > (AO(Sy—1d3v A ) | AjdY)

lj/—Jjl<4

y h
= — Z 27/ {(Aj8(Sj/_133VhW(_A)j/Ajfu3 - A;-;/Aj/uh)) | AjaW)
lj/—Jjl=<4

h
+ (Aja(Sj/_183W(Xj/Aj/u3 - A;’/Aj/uh)) | Ajavhlﬂ)},

from which we deduce

T
/0 (94 (Tasyu®) | 3A;¥)|dt

< D 18yl @2y (1S7-195Va N2 ooy 148V [l 5o 12)
lj/—Jjl=4

B.8) F1Sym105¥ egeeoo |99 2 )
< (2972 Foo(E [2.(B
< C]2 (||Vw||L%O(HA)||vhl//"L%—.(B§/12)

19l z5e 22 IV W 22 s )1V 2 sy
Finally, we note that
OA; (R d39) | 08 9) = > (A;0(8,u>Aj039) | Aj0y).
Jj'=Jj—No
Then, by a similar proof to that for , we have

T
/0 (04, (R(?, 03y)) | 94, v)|dt

3
2

<27 Z ||Aj’u”L%_([})(”Zj’aSvhl//”L%(Lz)”Ajaw”L?o(Lz)
(B 9) j/Zj_NO
+ 185939 llLge 12) 188V 1 2 (1.2))

—2j 3
<2 2”||V¢||z;o(m)||u||L2T(H%)IIVhlﬂlleT(Hm) fors > —=.

The conclusion of the lemma follows from (B.3)), (B.6)), (B-8)), and (B.9). O

PROOF OF LEMMAH7l Thanks to Bony’s decomposition (2.8)), we have
-V = T,V + R, V).
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Similar to (B.4)), we have
(AA; (T, V) [ AN )
= > {(AA;Sy—u] - VALY [ AAY)

[j/—Jjl=4

(B.10)
+ ((Sjr—1u = Sj—qu) - VAN Ajryr | AN )}

=+ (Sj_lu . VAAJI// | AAJW)

Again by the time integrability of V1 and d3v, we deduce that

T
3 /0 (AL Sy1ul - VA | AA;)|ds

[/ —il<4

j h
<20 ) (ISl 2 oo 1A VAV ll2 22
[j/—Jjl=4

H18j=1VUP 11 ooy 1A 039 I Lse 1) A AWl Lse 1)

—2j h
S cjzz 2js(||vu ||L2T(L°°)||vhwnL%(Hl+s)

+ ||Vu3”L1T(Loo)||a3w||z<%<>(1'11+s))||V1//||Z<%°(H1+s)-

Next, from Lemma [2.7)one gets

T
> /0 1((Sjr—11 — S;—qu) - VAA; Ay | AAj W) |dt

l/7—jl=4

S27 ) (ISp=a VUl = ;o Vit 2 oo [A A Vil 2 12)
lj/—Jjl=4

+ [1Sj—1Vu? — Sj—1Vu3||L1T(Loo)||AAj'331/f||L<;°(L2))
X |AA;VlLge(r2)

< ;27 ([IVu 122 ooy I VRV 72 (21+s)

+ ||Vu3 ||L1T(L00) ||831// ||Z<;°(H1+s)) ||VW”Z?°(H1+s)-

This along with (B:10) and divu = 0 leads to

T
I(AA; (T, V) | AA;)|de

(B.11) < Cjz2_2jS(||Vuh”L2T(Loo)||Vh1ﬂ||Z%v(H1+s)

+ ||Vu3 ||L1T(L0<>) ”831//”2%0(1.'11+s)) ||V1//||Z%O(H1+s)~



48 F. LIN AND P. ZHANG

It is clear that
18 (R™ Vi)l z2)

h
S 20 18l @) IS 2 Vv lliz o)
J'27~No

.~—J(2+s) h .
<27/ s ||VhW||L2T(L°°)”V” ||L2T(H‘+S) fors > -2,

and hence

T
(B.12) / (AN (RW™, Vi) | AAjv)|dt <
0
C?Z_NS”VMP||L2T(Loo)||Vuh||L2T(Hl+s)||vw||L;9(1.‘11+s) for s > —2.
Again by @, and integration by parts, one obtains that
(AN (R, 339)) | AA; )
= Z (AA; (AjuP)Sjraadsyr | AA; W)

J'=j—=No

iy h
=— Y 27/ {(AA,((XJ.,A,-,u3 — AL AU S 203 VW) | AAY)
J'=j—=No

h
+ (AL (R Aju® = AL A ") Sjriadsy | AN VY)Y
Then, by Lemma[2.7]one has

T
/0 (AL (R, 339)) | AD;y)|dr

27 30 27l 2y (18574283 Vi | 12 ooy 1A AT [l 5o (12)

J'=j—No

+ 184203V 5o o) 1AL ViV I 2 (1.2))-
from which, one deduces that for s > —2
T
|18 R a3y | a8yl

< 2j(2—s)( Z 277 (2+S)>||Vh1/f||L%_(LOO)||Vu||L%(H1+S)“vw”Z%O(Hl-H)
J'=—No

+ 209 (S 2O syl ooy IVl 3 i o IV D i
J'=—No

< G2 (VY Iz ooy IVV I Zoo (fr1+s)

+ 103 llzge ooy VRV L2 1+ IV L2 (gr145)-

Lemma follows from the above together with @D and @D
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