Eigenvalue Preservation for the Beris-Edwards System Modeling Liquid Crystal Flows

ADD TO MY CALENDAR
CROSS CAMPUS EVENTS
Title
Eigenvalue Preservation for the Beris-Edwards System Modeling Liquid Crystal Flows
Speaker
Xiang Xu, Old Dominion University
Date & Time
Thursday, May 18, 2017 -
15:00 to 16:00
Location
Room 264, Geography Building, 3663 Zhongshan Road North, Shanghai

The Beris-Edward is a hydrodynamic system modeling nematic liquid crystals in the setting of Q-tensor order parameter. Mathematically speaking it is the incompressible Navier-Stokes equations coupled with a Q tensor equation of parabolic type.
We first consider the simplified Beris-Edward system that corresponds to the co-rotational case, and study the eigenvalue preservation property for the initial Q-tensor order parameter in 3D. We work in both the whole space and bounded domain cases, and provide two different proofs. Then we show that for the general system that relates to the non-corotational case, this property is not valid.

Biography
Xiang Xu holds his Ph.D. from Pennsylvania State University in 2011. He is assistant professor in Old Dominion University. His research interests are partial differential equations and fluid mechanics.

 Download the Flyer 

Seminar by the NYU-ECNU Institute of Mathematical Sciences at NYU Shanghai

Location & Details

Transportation Tips:

  • Taxi Card
  • Metro:  Jinshajiang Road Station, Metro Lines 3/4/13 
  • Shuttle Bus:
    From NYU Shanghai Pudong Campus, Click here
    From ECNU Minhang Campus, Click here