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ABSTRACT OF THE TALK 

BIOGRAPHY 

Lei Zhang is Associate Professor of Mathematics at the Shanghai Jiao Tong University. He received his 
Ph.D. in Applied and Computational Mathematics from California Institute of Technology in 2007. He is 
especially interested in multiscale analysis, modeling and simulation. His current focus is numerical 
homogenization and atomistic/continuum coupling. 

PDE/ANALYSIS SEMINAR 

The field of numerical homogenization concerns the numerical approximation of the solution space of, for example, 
divergence form elliptic equation with L∞ coefficients by a finite-dimensional space. This problem is motivated by the fact 
that standard methods such as finite-element method with piecewise polynomial elements can perform arbitrarily badly for 
PDEs with rough coefficients. Some numerical homogenization methods are developed from classical homogenization 
concepts such as periodic homogenization and scale separation, however, one of the main objectives of numerical 
homogenization is to achieve a numerical approximation of the solution space of the equation with arbitrary rough 
coefficients. For problem with nonseparable scales, we have proposed the method of harmonic coordinates for scalar elliptic 
equation in 2D [4]. In [2] the transfer property of the flux-norm is introduced to identify the global basis. In [5], we conclude 
the strong compactness of the solution space, which guarantees the existence of accurate finite-dimensional approximation 
space as long as the right hand side is not too singular. Now the name of the game becomes how to achieve such a 
finite-dimensional space with optimal convergence rate and least cost, namely, the space with best localized basis, which 
we discussed in [5, 6]. For development in this direction, please also see [1, 3].
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